sdi package¶
Subpackages¶
- sdi.clients package
- Submodules
- sdi.clients.custom_datatypes_client module
- sdi.clients.data_ingest_client module
- sdi.clients.data_lake_client module
- sdi.clients.data_query_operations_client module
- sdi.clients.data_registry_client module
- sdi.clients.iot_dataregistry_client module
- sdi.clients.ontologies_client module
- sdi.clients.ontologies_operations_client module
- sdi.clients.schema_registry_client module
- Module contents
- sdi.models package
- Submodules
- sdi.models.aliases module
- sdi.models.api_errors_view module
- sdi.models.api_field_error module
- sdi.models.create_data_lake_request module
- sdi.models.create_data_lake_response module
- sdi.models.create_data_registry_request module
- sdi.models.data_lake_list module
- sdi.models.data_lake_response module
- sdi.models.data_query_execute_query_request module
- sdi.models.data_query_execute_query_response module
- sdi.models.data_query_execution_response module
- sdi.models.data_query_sql_request module
- sdi.models.data_query_sql_response module
- sdi.models.data_query_sql_update_request module
- sdi.models.data_registry module
- sdi.models.data_type_definition module
- sdi.models.data_type_pattern module
- sdi.models.error_message module
- sdi.models.file module
- sdi.models.get_all_sql_queries_data module
- sdi.models.infer_schema_search_request module
- sdi.models.infer_search_object module
- sdi.models.input_class module
- sdi.models.input_class_property module
- sdi.models.input_mapping module
- sdi.models.input_mapping_class_property module
- sdi.models.input_mapping_schema_property module
- sdi.models.input_parent module
- sdi.models.input_property_relation module
- sdi.models.input_schema module
- sdi.models.input_schema_property module
- sdi.models.iot_data_registry module
- sdi.models.iot_data_registry_response module
- sdi.models.job_status module
- sdi.models.job_status_ontology_response module
- sdi.models.list_of_data_type_definition module
- sdi.models.list_of_io_t_registry_response module
- sdi.models.list_of_job_ids module
- sdi.models.list_of_patterns module
- sdi.models.list_of_registry_response module
- sdi.models.list_of_schema_properties module
- sdi.models.list_of_schema_registry module
- sdi.models.mapping_error_sql_details module
- sdi.models.mapping_function module
- sdi.models.mdsp_api_error module
- sdi.models.mdsp_api_error_message_parameters module
- sdi.models.mdsp_error module
- sdi.models.mdsp_errors module
- sdi.models.message_parameter module
- sdi.models.native_query_get_response module
- sdi.models.null_request module
- sdi.models.ontology_create_request module
- sdi.models.ontology_job module
- sdi.models.ontology_metadata module
- sdi.models.ontology_response_data module
- sdi.models.page_token module
- sdi.models.parameters module
- sdi.models.pattern module
- sdi.models.query_obsolete_result module
- sdi.models.query_parameters module
- sdi.models.query_result module
- sdi.models.response_all_data_query_execution_response module
- sdi.models.response_all_data_sql_query module
- sdi.models.response_all_ontologies module
- sdi.models.schema_search_object module
- sdi.models.schema_search_request module
- sdi.models.sdi_file_upload_response module
- sdi.models.sdi_ingest_data module
- sdi.models.sdi_job_status_response module
- sdi.models.sdi_schema_property module
- sdi.models.sdi_schema_registry module
- sdi.models.suggest_patterns_post module
- sdi.models.token_page module
- sdi.models.update_data_lake_request module
- sdi.models.update_data_registry_request module
- Module contents
Module contents¶
SDI - Semantic Data Interconnect APIs
The Semantic Data Interconnect (SDI) is a collection of APIs that allows the user to unlock the potential of disparate big data by connecting external data. The SDI can infer the schemas of data based on schema-on-read, allow creating a semantic model and perform big data semantic queries. It seamlessly connects to MindSphere’s Integrated Data Lake (IDL), but it can work independently as well. There are two mechanisms that can be used to upload files so that SDI can generate schemas and make data ready for query. The SDI operations are divided into the following groups: Data Registration for SDI This set of APIs is used to organize the incoming data. When configuring a Data Registry, you have the option to update your data based on a replace or append strategy. If you consider a use case where schema may change and incoming data files are completely different every time then replace is a good strategy. The replace strategy will replace the existing schema and data during each data ingest operation whereas the append strategy will update the existing schema and data during each data ingest operation. Custom Data Type for SDI The SDI by default identifies basic data types for each property, such as String, Integer, Float, Date, etc. The user can use this set of APIs to create their own custom data type. The SDI also provides an API under this category to suggest data type based on user-provided sample test values. Data Lake for SDI The SDI can process files uploaded provides endpoints to manage customer’s data lake registration based on tenant id, cloud provider and data lake type. The set of REST endpoint allows to create, update and retrieve base path for their data lake. The IDL customer needs to create an SDI folder that is under the root folder. Any file uploaded in this folder is automatically picked up by SDI to process via IDL notification. Data Ingest for SDI This set of APIs allows user to upload files, start an ingest job for uploaded files, find job status for ingested jobs or retrieve all job statuses. Schema Registry for SDI The SDI provides a way to find the generated schema in this category. Users can find an SDI generated schema for uploaded files based on source name, data tag or schema name. Data Query for SDI allows querying based on the extracted schemas. Important supported APIs are: * Query interface for querying semantically correlated and transformed data. * Stores and executes data queries. * Uses a semantic model to translate model-based query to physical queries. Semantic Model for SDI allows user to create semantic model ontologies based on the extracted one or more schemas. The important functionalities achieved with APIs are: * Contextual correlation of data from different systems. * Infers & Recommends mappings between different schemas. * Import and store Semantic model. # noqa: E501