Source code for sdi.clients.custom_datatypes_client

# coding: utf-8

"""
    SDI - Semantic Data Interconnect APIs

    The Semantic Data Interconnect (SDI) is a collection of APIs that allows the user to unlock the potential of disparate big data by connecting external data. The SDI can infer the schemas of data based on schema-on-read, allow creating a semantic model and perform big data semantic queries. It seamlessly connects to MindSphere's Integrated Data Lake (IDL), but it can work independently as well. There are two mechanisms that can be used to upload files so that SDI can generate schemas and make data ready for query. The SDI operations are divided into the following groups:    **Data Registration for SDI** This set of APIs is used to organize the incoming data. When configuring a Data Registry, you have the option to update your data based on a replace or append strategy. If you consider a use case where schema may change and incoming data files are completely different every time then replace is a good strategy. The replace strategy will replace the existing schema and data during each data ingest operation whereas the append strategy will update the existing schema and data during each data ingest operation.    **Custom Data Type for SDI** The SDI by default identifies basic data types for each property, such as String, Integer, Float, Date, etc. The user can use this set of APIs to create their own custom data type. The SDI also provides an API under this category to suggest data type based on user-provided sample test values.    **Data Lake for SDI** The SDI can process files uploaded provides endpoints to manage customer's data lake registration based on tenant id, cloud provider and data lake type. The set of REST endpoint allows to create, update and retrieve base path for their data lake. The IDL customer needs to create an SDI folder that is under the root folder. Any file uploaded in this folder is automatically picked up by SDI to process via IDL notification.    **Data Ingest for SDI** This set of APIs allows user to upload files, start an ingest job for uploaded files, find job status for ingested jobs or retrieve all job statuses.    **Schema Registry for SDI** The SDI provides a way to find the generated schema in this category. Users can find an SDI generated schema for uploaded files based on source name, data tag or schema name.   **Data Query for SDI** allows querying based on the extracted schemas. Important supported APIs are:   * Query interface for querying semantically correlated and transformed data.   * Stores and executes data queries.   * Uses a semantic model to translate model-based query to physical queries.   **Semantic Model for SDI** allows user to create semantic model ontologies based on the extracted one or more schemas. The important functionalities achieved with APIs are:   * Contextual correlation of data from different systems.   * Infers & Recommends mappings between different schemas.   * Import and store Semantic model.   # noqa: E501
"""


from __future__ import absolute_import

from mindsphere_core.mindsphere_core import logger
from mindsphere_core import mindsphere_core, exceptions, token_service
from mindsphere_core.token_service import init_credentials


[docs]class CustomDatatypesClient: __base_path__ = '/api/sdi/v4' __model_package__ = __name__.split('.')[0] def __init__(self, rest_client_config=None, mindsphere_credentials=None): self.rest_client_config = rest_client_config self.mindsphere_credentials = init_credentials(mindsphere_credentials)
[docs] def get_data_types(self, request_object): """Retrieves the custom datatypes for the current tenant. Retrieves custom datatypes for the current tenant containing data type name and one or more registered patterns. :param DataTypesGetRequest request_object: It contains the below parameters --> |br| ( pageToken - Selects next page. Value must be taken rom response body property 'page.nextToken'. If omitted, first page is returned. ) :return: ListOfDataTypeDefinition """ logger.info('CustomDatatypesClient.get_data_types() invoked.') end_point_url = '/dataTypes' end_point_url = end_point_url.format() token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {'pageToken': request_object.page_token} form_params, local_var_files, body_params = {}, {}, None logger.info('CustomDatatypesClient.get_data_types() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'GET', query_params, form_params, body_params, local_var_files, 'ListOfDataTypeDefinition', self.__model_package__)
[docs] def update_data_types_name_add_patterns(self, name, request_object): """Updates Datatype Update custom datatypes :param DataTypesNameAddPatternsPostRequest request_object: It contains the below parameters --> |br| ( dataTypePattern* - dataTypePattern ), |br| ( name* - name ) :return: DataTypeDefinition """ logger.info('CustomDatatypesClient.update_data_types_name_add_patterns() invoked.') if name is None: raise exceptions.MindsphereClientError('`name` is not passed when calling `update_data_types_name_add_patterns`') if request_object is None: raise exceptions.MindsphereClientError('`request_object` is not passed when calling `update_data_types_name_add_patterns`') end_point_url = '/dataTypes/{name}/addPatterns' end_point_url = end_point_url.format(name=name) token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {} form_params, local_var_files, body_params = {}, {}, request_object logger.info('CustomDatatypesClient.update_data_types_name_add_patterns() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'POST', query_params, form_params, body_params, local_var_files, 'DataTypeDefinition', self.__model_package__)
[docs] def delete_data_types_name(self, name): """Deletes custom datatype for a given datatype name Deletes custom datatype for a given datatype name if it is not being used by any schema :param DataTypesNameDeleteRequest request_object: It contains the below parameters --> |br| ( name* - name ) :return: None """ logger.info('CustomDatatypesClient.delete_data_types_name() invoked.') if name is None: raise exceptions.MindsphereClientError('`name` is not passed when calling `delete_data_types_name`') end_point_url = '/dataTypes/{name}' end_point_url = end_point_url.format(name=name) token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {} form_params, local_var_files, body_params = {}, {}, None logger.info('CustomDatatypesClient.delete_data_types_name() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'DELETE', query_params, form_params, body_params, local_var_files, None, self.__model_package__)
[docs] def get_data_types_name(self, request_object): """Retrieves datatype for a given datatype name Retrieves custom datatype for a given datatype name :param DataTypesNameGetRequest request_object: It contains the below parameters --> |br| ( name* - name ) :return: DataTypeDefinition """ logger.info('CustomDatatypesClient.get_data_types_name() invoked.') if request_object is None: raise exceptions.MindsphereClientError('`request_object` is not passed when calling `data_types_name_get`') end_point_url = '/dataTypes/{name}' end_point_url = end_point_url.format(name=request_object) token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {} form_params, local_var_files, body_params = {}, {}, None logger.info('CustomDatatypesClient.get_data_types_name() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'GET', query_params, form_params, body_params, local_var_files, 'DataTypeDefinition', self.__model_package__)
[docs] def create_data_types(self, request_object): """Custom datatype registration. Initiates a registration for list of custom datatypes for given datatype name and regular expression patterns. There can be one or more pattern for a given custom data type. The custom datatype is being used by DataUpload process during schema generation. The custom datatype registration is rejected for the current tenant if invalid regular expression pattern is provided. The custom datatype applies to all the files ingested for the current tenant. The tenant can have maximum **200** datatypes per tenant and each datatype cannot exceed **10** regular expression pattern per datatypename. This returns unique **name* that can be used to retrieve the custom data type. :param DataTypesPostRequest request_object: It contains the below parameters --> |br| ( dataTypeDefinition* - dataTypeDefinition ) :return: DataTypeDefinition """ logger.info('CustomDatatypesClient.create_data_types() invoked.') if request_object is None: raise exceptions.MindsphereClientError('`request_object` is not passed when calling `data_types_post`') end_point_url = '/dataTypes' end_point_url = end_point_url.format() token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {} form_params, local_var_files, body_params = {}, {}, request_object logger.info('CustomDatatypesClient.create_data_types() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'POST', query_params, form_params, body_params, local_var_files, 'DataTypeDefinition', self.__model_package__)
[docs] def create_suggest_patterns(self, request_object): """Generates the regular expression patterns for a given set of sample values Generates the regular expression patterns for a given set of sample values. In this case **sampleValues** generates a number of regex patterns and tries to match with patterns provided in **testValues**. The response contains any of testValues that matches sampleValues as probable pattern match. :param SuggestPatternsPostRequest request_object: It contains the below parameters --> |br| ( sampleValues* - sampleValues ), |br| ( testValues* - testValues ) :return: ListOfPatterns """ logger.info('CustomDatatypesClient.create_suggest_patterns() invoked.') if request_object is None: raise exceptions.MindsphereClientError('`request_object` is not passed when calling `create_suggest_patterns`') if request_object.sample_values is None: raise exceptions.MindsphereClientError('The required parameter `sampleValues` is missing from `request_object`, when calling `create_suggest_patterns`') if request_object.test_values is None: raise exceptions.MindsphereClientError('The required parameter `testValues` is missing from `request_object`, when calling `create_suggest_patterns`') end_point_url = '/suggestPatterns' end_point_url = end_point_url.format() token = token_service.fetch_token(self.rest_client_config, self.mindsphere_credentials) api_url = mindsphere_core.build_url(self.__base_path__, end_point_url, self.rest_client_config) headers = {'Accept': 'application/json', 'Content-Type': 'application/json', 'Authorization': 'Bearer ' + str(token)} query_params = {'sampleValues': request_object.sample_values, 'testValues': request_object.test_values} form_params, local_var_files, body_params = {}, {}, None logger.info('CustomDatatypesClient.create_suggest_patterns() --> Proceeding for API Invoker.') return mindsphere_core.invoke_service(self.rest_client_config, api_url, headers, 'POST', query_params, form_params, body_params, local_var_files, 'ListOfPatterns', self.__model_package__)