Skip to content

Anomaly Detection

The Anomaly detection extension as part of AI for Everyone offering on MindSphere, offers an out-of-the-box model building and detect the variations in your time series data values, using advanced artificial intelligence and machine learning technologies.

Anomaly detection uses time series data from MindSphere asset as dataset and does easy configuration for model building and detection of anomalies.

The Anomaly detection report visualizes the anomaly spots, indicators, which could be further utilized for your targeted use cases like comparing with threshold value, reviewing historic records.

User Interface of the Anomaly Detection

The following figure schows the anomaly detection screen:

Anomaly-UI

① Dataset information
② Details of the Anomaly detection
③ Data visualization area
④ Anomaly detection configuration settings

Build the Anomaly Detection model

To build the anomaly detection model, proceed with the following steps:
1. Open "AI for Everyone" in the "Analyze" tab.
2. Select the "Use Case", and click "Anomaly Detections".
3. In the "In-sample Period" configure setting, select the time period required for the training dataset for the model building.
4. Select the target variable and the input variable of your choice in the Influencers setting.
5. Configure the Perspective and Sensitivity settings: - Residual Sensitivity: Detects the residuals with significantly higher magnitude than those observed on the in-sample period as anomalous.
- Residual Change: Detects the most extreme changes compared to the anomalous behavior model can see on the in-sample period.
- Fluctuation: Anomalous behavior model detects anomalies if different fluctuations are observed than those which were present during the in-sample period.
- Fluctuation Change: The fluctuation change perspective focuses on the fluctuation of the residuals output similarly to the fluctuation perspective. However, the difference is that the fluctuation change perspective seeks only for the change in the fluctuation.
- Imbalance Sensitivity: The imbalance perspective helps to detect anomalies accompanied by deviation of the residuals output from zero for a longer period of time.
- Imbalance Change: Anomalous behavior model with an imbalance change perspective is suited for detecting anomalies that occur when a change of imbalance in the residuals output is observed.
6. Configure the Normal Behaivor setting.
7. Configure the Data Imputation setting.
8. Click "Build a model".

Anomalymodelbuilding

Schedule the Anomaly model for production

It is now possible to schedule the production of the anomaly model which can be executed and evaluated on the regular intervals as per the preferred time range.

To schedule the production run of the anomaly model, proceed with the following steps:

  1. Open "AI for Everyone" in the "Analyze" tab.
  2. Select the "Use Case", and click "Anomaly Detections".
  3. Select the preferred model from the list of available models.
  4. Click Schedule for production.
  5. Select the preferred frequency for executing the models.
    The anomaly models can be executed as per the below intervals:
    • Minutes
    • Hourly
    • Daily
    • Weekly
  6. Select the preferred date range.
  7. Click Save.

Schedule for production

Anomaly Detections

Once the anomaly detection is scheduled for production, the anomalies are generated as per the schedule. The generated anomalies can be used to analyze the data for the selected variables of the asset. To view the anomaly detection, click "Production detections" and select the preferred anomaly detections from the "detail result for forecast execution" drop-down.

Anomaly detection

Detect the Anomalies

Once the model for anomaly detection is built, configure the "Out of sample period" setting, the time period to execute the anamoly detection. Click "Detect" to start detecting the anomaly spots for the selected dataset.

Anomaly-Detection

Once the Anomaly detection is completed, the anomaly spots are displayed as shown below:

Anomalydetection-results

① Selected variables and Anomalies
② Anomaly indicators as per the perspectives
③ Anomaly detection configuration
④ Top Predictors

Delete Anomaly Detections

To delete the generated anomaly detections, select the anomaly delections from the list, click threedotsicon and select "Delete".

Any questions left?

Ask the community


Except where otherwise noted, content on this site is licensed under the MindSphere Development License Agreement.


Last update: December 2, 2022